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Abstract: Recent advances in the development of robotic foundation models have1

led to promising end-to-end and general-purpose capabilities in robotic systems.2

These models are pretrained on vast datasets of robot trajectories to process multi-3

modal inputs and directly output a sequence of action that the system then executes4

in the real world. Although this approach is attractive from the perspective of im-5

proved generalization across diverse tasks, these models are still data-driven and,6

therefore, lack explicit notions of behavioral correctness and safety constraints.7

We address these limitations by introducing a constrained decoding framework8

for robotics foundation models that enforces logical constraints on action trajec-9

tories in dynamical systems. Our method ensures that generated actions provably10

satisfy signal temporal logic (STL) specifications at runtime without retraining,11

while remaining agnostic of the underlying foundation model. We perform com-12

prehensive evaluation of our approach across state-of-the-art navigation founda-13

tion models and we show that our decoding-time interventions are useful not only14

for filtering unsafe actions but also for conditional action-generation. Videos and15

code are available on our website: https://constrained-robot-fms.github.io16

Keywords: Foundation Models, Provably Safe Robotics, Neuro-symbolic17

robotics18

1 Introduction19

Recent advances in Robotics Foundation Models (RFM) have enabled general purpose robot policies20

that map multi-modal inputs such as RGB images, natural language instructions and proprioceptive21

inputs to action sequences [1]. RFMs such as SPOC [2], PoliFormer [3], OpenVLA [4] exhibit im-22

pressive generalization in navigation and manipulation tasks and serve as versatile robot controllers23

for real-world deployment contexts. However, these models are primarily data-driven and lack any24

explicit notion of safety. Although these models may implicitly exhibit safety-related behaviors25

depending on the patterns in their training data, there is no formal guarantee that models will consis-26

tently behave safely in all situations. This serves as a limiting factor for deploying these foundation27

models in the physical world where rule compliance and regulatory safety rule adherence are crucial.28

Formal specifications have long been used to specify rules of operation such as safety requirements29

or mission directives for robotic deployments [5, 6]. Specifically, temporal logics [7] can capture30

rich desired temporal constraints over robot behavior, such as “remain within permitted region zones31

and avoid dangerous obstacles”. This provides a rigorous workflow to encode behavior rulebooks32

using temporal logics and enforce them for robotic foundation models. Although temporal logic33

has seen success in classical robotic planning for reliable behavior generation, its use for foundation34

models remains limited. Additionally, retraining or fine-tuning these large pre-trained models to35

directly embed temporal logic specification is challenging [8]. First, retraining models is costly36

endeavor in terms of computational resources and data requirements. Moreover, due to the stochastic37

nature of these models, it is difficult to guarantee strict satisfaction of temporal constraints through38
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training alone. Hence, there is a pressing need for methods that can enforce temporal specifications39

efficiently at inference time without disrupting the model’s pre-trained behavior.40

In the field of natural language processing, syntactic constraints have been successfully enforced41

by applying constrained decoding at inference time [9, 10, 11]. These approaches typically mask42

out tokens that violate a syntactic constraint defined over token sequences. For example, regular43

expressions (regex) represent a widely used form of syntactic constraint, requiring that generated44

token sequences conform to predefined structural patterns [9, 10]. Inspired by this line of work, we45

extend the paradigm of constrained decoding to enforce logical constraints over action trajectories46

in dynamical systems and propose specification aligned decoding (SpecDec) for RFMs that ensures47

generated action sequences provably satisfy Signal Temporal Logic (STL) [12] specifications. Our48

key insight is that decoding-time interventions can be used not just to filter unsafe actions, but to49

condition the generation process itself on specification satisfaction. This conditioning is critical50

because it steers the model toward generating specification satisfying actions rather than relying on51

post hoc rejection. SpecDec reduces risk of infeasible outputs while preserving the original action52

distribution of the model. To enforce such specifications, we leverage the formal semantics of STL53

to evaluate candidate actions at runtime and mask those that lead to future violations. Our method54

is agnostic to the underlying foundation model, requiring only two properties: (1) access to the55

decoding-layer logits during inference, and (2) access to a lightweight dynamics model to predict56

future states. To efficiently evaluate STL specifications at inference time, we use a high-performance57

computational graph based library STLCG++ [13]. To the best of our knowledge, this is the first work58

to apply constrained decoding with STL specifications to RFMs.59

Our main contributions are as follows: First, we introduce the novel problem of constrained decod-60

ing for robotic foundation models under Signal Temporal Logic specifications (Section 3.1). Second,61

we propose an inference-time technique that reweights or masks candidate actions using STL satis-62

faction scores in (Section 3.2 and 3.3). Finally, we demonstrate the effectiveness of our method on63

state-of-the-art object navigation models without modifying model parameters (Section 4).64

2 Preliminaries65

2.1 Signal Temporal Logic66

Signal Temporal Logic (STL) is an expressive framework for defining properties and reasoning over67

continuous time real valued signals [14]. Formally, (s, t) |= ϕ denotes that a signal s satisfies the68

STL formula ϕ at time t. An atomic predicate of an STL formula is represented by inequalities of69

the form µ(s(t)) > 0. The truth value of the predicate µ is equivalent to µ(s(t)) > 0. Note that70

with slight abuse of notation, µ represents both the predicate and a function of the trajectory s(t).71

Any STL formula consists of Boolean and temporal operations on these predicates, and the syntax72

of STL formulas is defined recursively as follows:73

ϕ := µ | ¬µ | ϕ ∧ ψ | ϕ ∨ ψ |G[a,b] ψ | F[a,b] ψ | ϕU[a,b] ψ

where ψ and ϕ are STL formulae, G denotes the globally operator, F the eventually operator, and74

U is the until operator. For example, s |= G[a,b]ψ specifies that ψ must be in all times in the given75

interval, t ∈ [a, b] of the signal s. Similarly, the operator until in s |= ϕU[a,b]ψ defines that ϕ must76

be true until ψ becomes true within a time interval [a, b].77

Given a signal st representing a signal starting at time t, the Boolean semantics of satisfaction of78

st |= ϕ are defined inductively as follows:79

st |= µ ⇐⇒ µ(s(t)) > 0

st |= ¬φ ⇐⇒ ¬(st |= φ)

st |= φ1 ∧ φ2 ⇐⇒ (st |= φ1) ∧ (st |= φ2)

st |= F[a,b](φ) ⇐⇒ ∃t′ ∈ [t+ a, t+ b] s.t. st′ |= φ

st |= G[a,b](φ) ⇐⇒ ∀t′ ∈ [t+ a, t+ b] s.t. st′ |= φ
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Apart from the Boolean semantics, quantitative semantics are defined for a signal to compute a real-80

valued metric indicating robustness, i.e., the strength of satisfaction or violation. For the sake of81

brevity, the definition of robustness is provided in Appendix A.82

2.2 Constrained Decoding in Transformers83

A large variety of autoregressive transformer-based models generate final outputs by producing a84

probability distribution over the model vocabulary at each timestep. This distribution is generated85

by performing a softmax operation over the model’s last hidden layer. Then, through the process of86

decoding, tokens are selected to maximize the overall likelihood of an output sequence. In standard87

decoding, this maximization can be performed by either greedily selecting the most probable token88

at each step or by using a beam search to maintain multiple high-likelihood candidates. However,89

this often leads to degenerate output sequences that are repetitive [15]. A common approach is to90

use sampling strategies like top k [16], and nucleus sampling [15] that introduce stochasticity to91

encourage more diverse outputs. Constrained decoding [17] modifies this probabilistic selection by92

pruning invalid tokens to ensure that the generated sequences satisfy predefined constraints. These93

constraints are often syntactic, such as regular expressions, JSON formatting, or programming lan-94

guage grammars [18]. There is also recent work on enforcing semantic constraints that ensure95

coherence of the output or alignment with specific knowledge bases [19]. Formally, constrained96

decoding can be seen as maximizing the probability of the output sequence subject to a constraint97

C: argmaxy∈YC P (y | x) where YC is the set of sequences satisfying C.98

3 Specification-Guided Constrained Decoding99

Constrained Action Decoder 

Image Encoder Text Encoder

“Locate the plant”

Robot Foundation Model (SPOC, FlaRE)

Safe ActionsInput Image

1. !inside(R_1)
2. Always(vel<0.5)
3. ..

Rulebook

Figure 1: Overview of our specification aligned decoding framework. Given multimodal inputs (e.g.,
RGB images and natural language instructions), a pretrained Robot Foundation Model (e.g., SPOC)
generates candidate actions. These actions are filtered or reweighted by the constrained decoding
technique based on temporal logic constraints. In the figure, green markers denote target object
locations, while red zones represent regions to avoid, as defined by temporal logic constraints.

In this section, we introduce a novel problem formulation for SpecDec in RFMs. First, we high-100

light the challenge in specification checking for RFMs in contrast to traditional syntactical con-101

straint checking adopted by LLMs, and our solution to remedy it. Then, we propose two novel102

inference-time techniques for specification aligned decoding: Hard Constrained Decoding (HCD)103

and Robustness Constrained Decoding (RCD).104
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3.1 Problem Statement105

As highlighted in the background section, existing techniques in constrained decoding for language106

models enforce syntactic constraints defined over tokens such as conforming to a context-free gram-107

mar or matching a regular expression. In these setups, constraint checking can be performed in the108

model’s token space.109

In contrast, RFMs operate in a physical environment and constraints (captured via temporal logic)110

are defined over state variables. Since a large class of end-to-end RFMs solely propose action se-111

quences, specification checking can only be performed as actions are executed and the environment112

is simulated forward. In this case, constrain checking cannot be done solely in the token space and113

requires environmental feedback or a dynamics stepping function. Hence, we leverage a dynamics114

function to compute specification satisfaction of different action sequences proposed by an RFM.115

Consider a discrete dynamical system with states xt ∈ Rn and actions at ∈ A at time step t. The116

system’s dynamics are defined by xt+1 = f(xt, at) where f : Rn ×A → Rn maps the current state117

(xt ∈ Rn) and a discrete action (at ∈ A) to the next state xt+1 ∈ Rn. This system is controlled by118

a policy that selects an action at at each time step based on observations and task context such as119

user-provided natural-language instructions or goal waypoints.120

In this work, we focus on RFMs that generate actions based on multi-modal inputs, including sensor121

observations (e.g., RGB, depth, LiDAR) and natural language instructions. Let It represent the122

aggregated input at timestep t. These inputs are first encoded into a latent embedding space through123

modality-specific encoders: eIt
= EI

(
It
)
.124

Given the history of encoded inputs up to time t, a Transformer-based foundation model parameter-125

ized by θ predicts embeddings for the next T−t actions:126

{êat+k
}T−t
k=1 = Transformerθ

(
{eIτ }tτ=0

)
.

Each predicted action embedding is decoded into an action ât+k ∈ A, resulting in a predicted action127

sequence {ât+1, . . . , âT }, where T denotes the planning horizon.128

Now, consider that the system is required to satisfy requirements encoded using an STL formula129

φ defined over the state variables of the system. Formally, the goal is to ensure that the resulting130

trajectory satisfies the specification φ:131

{(x0, â0), . . . , (xT , âT )} |= φ

Most of the existing techniques for specification enforcement perform posthoc manipulation of pro-132

posed foundation model actions through filtering or rejecting action sequences that violate the spec-133

ification φ. Although manipulation after sampling can ensure specification satisfaction, it can lead134

to distorting the model’s learned distribution, producing low likelihood outputs. This undermines135

the inductive biases learned during pretraining and leads to degenerate, brittle behaviors. A simi-136

lar problem was highlighted when ensuring compliance with logical constraints for large language137

models in [20]. Additionally, RFMs decode actions sequentially, where each action at is condi-138

tioned on previously generated tokens a<t. Posthoc manipulation can disrupt this causal chain and139

lead to a mismatch between the model’s internal hidden state and the executed sequence. Hence, we140

propose the following problem statement:141

How can we enforce temporal logic constraints during action generation in robot142

foundation models such that the output sequence (1) satisfies an STL specification143

φ, and (2) remains faithful to the model’s autoregressive distribution π(a1:T |144

I1:T )?145

Let π(a1:T ) be the unconstrained action-sequence distribution produced by the RFM’s decoder (e.g.146

the softmax over logits generated by the Transformer). We define the ideal constrained distribution147

over action sequences as:148

Qπ,φ(a1:T ) =
π(a1:T ) · 1[(x1:T , a1:T ) |= φ]∑

a′
1:T

π(a′1:T ) · 1[(x′1:T , a′1:T ) |= φ]
(1)
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where x1:T denotes the state trajectory induced by the system dynamics under actions a1:T and149

1[·] is the indicator function that returns 1 iff the trajectory-action pair satisfies the specification.150

Equation 1 is the exact Bayesian conditioning of π on the event that the generated rollout satisfies φ.151

Hence, sampling from Qπ,φ would give sequences that (i) inherit the original model’s preferences152

encoded in π and (ii) guarantee specification satisfaction.153

In this work, we propose a technique to overcome the drawbacks of post-hoc safety enforcement154

methods (such as filtering) by leveraging constrained decoding techniques. Specifically, we propose155

SpecDec: A constrained decoding strategy that integrates STL specifications into the foundation156

model action selection process itself, ensuring satisfaction without distorting the model’s distribu-157

tion.158

3.2 Hard Constrained Decoding159

As highlighted in the background section, in the final layer, predictions are detokenized and a pro-160

jection layer converts the embeddings into logits over the vocabulary space. These logits are further161

converted into a probability distribution using a softmax operation. In prior work, for structured out-162

put generation in LLMs, some invalid tokens are masked based on syntactical constraints or other163

criteria [18, 20]. This is done by setting their logit value as −∞ before the softmax operation is164

applied. For HCD, we use a similar approach as constrained decoding literature [18] and mask out165

predicted action tokens that violate our given STL specification φ during sequential generation. For-166

mally, to enforce the STL specification φ during sequential generation, we adjust the logits at each167

timestep t+ k as follows:168

Let zt+k denote the logits at timestep t+ k. For each action choice i at timestep t+ k, we define:169

z
(i)
t+k =

{
−∞, if x̂(i)t+k = f(xt+k−1, â

(i)
t+k) violates φ

z
(i)
t+k, otherwise

Here t is the current decision step, k is an index for the look-ahead step t + k within a planning170

horizon of length T (k ∈ [1..T ]), â(i)t+k is the action mapping to the token i and x̂(i)t+k is the next171

state value upon taking this action. This next state is elicited using a simple dynamics model (f ) as172

highlighted in the previous section. Adjusting logits in this fashion ensures that any invalid token173

with respect to the safety specification will have zero probability of being selected after applying the174

softmax function. We introduce a theorem to state that our proposed approach generates a trajectory175

that satisfies the given specification φ:176

Theorem 1 (Specification Satisfaction Modulo Dynamics). Let πHCD denote the policy induced177

by hard-constrained decoding with respect to an STL specification φ, and let f be a deterministic178

dynamics model used during decoding. Then the generated trajectory satisfies the specification:179

{(xt+1, ât+1), . . . , (xT , âT )} |= φ

where each action ât+k ∼ πHCD(· | xt+k−1), and xt+k = f(xt+k−1, ât+k) for all k.180

A proof sketch is provided in the Appendix B181

3.3 Robustness Constrained Decoding182

HCD ensures compliance but can lead to compromising task success, which can be undesirable.183

A similar tradeoff was observed by [21] when probability space-steering preserved model fluency184

while reducing toxic continuations compared with hard-filtering strategies that inflated perplexity185

and eroded diversity. Hence, we propose an alternative approach, called RCD, where we leverage186

the quantitative semantics of STL specifications (robustness). Unlike HCD, which applies hard187

masking to completely remove unsafe actions, RCD softly guides the model toward safer actions188

by incorporating robustness scores that reflect the degree of satisfaction of φ. This is similar to the189

approach proposed in [21] where the next-token distributions were re-weighted based on the utility190

scores provided by another language model. Our utility scores are quantified by the robustness191
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function( ρ(xt, φ) ) that returns a real-valued score indicating how well a predicted state satisfies192

the specification. Positive robustness values denote specification satisfaction, while negative values193

capture the degree of violation.194

First, we compute a robustness score for each candidate action: r(i)t+k = ρ(x̂
(i)
t+k, φ) where ρ(·, φ) is195

the STL robustness metric, and x̂(i)t+k is the predicted next state under action â(i)t+k. This robustness196

score r(i)t+k quantifies how well each candidate action satisfies the specification φ. These scores197

are then converted into weights using exponential scaling: wt+k,i = exp(α · rt+k,i) where α is198

a temperature parameter that adjusts the sharpness of the bias. We use these weights to shift the199

original logits: z̃t+k,i = zt+k,i + β · wt+k,i where β is a hyperparameter that modulates the trade-200

off between specification adherence and the original task objective. Finally, we obtain the action201

distribution by applying softmax over the adjusted logits: pt+k = softmax(z̃t+k)202

This approach allows for graded preferences that improve flexibility and robustness to dynamics203

approximation errors. This is because every action keeps a non-zero probability, the policy can still204

recover when the dynamics model is imperfect. Concretely, if the predicted successor x̂t+1 is off by205

ϵ, an action that looked marginally unsafe can be safe in the true system, and vice versa. Retaining a206

weighted down probability for this action gives the sampler a fall-back option where as HCD would207

completely rule this action out due to 0 probability. Since we are shifting the probability mass for208

unsatisfying actions, it is possible that they are still chosen and lead to a violation. However, this209

is a tradeoff we allow to achieve a given task objective. We note that this still ensures higher STL210

sastifaction than unconstrained actions.211

4 Evaluation212

4.1 Implementational Details213

We evaluate our constrained decoding approach on AI2-THOR simulated [22] indoor environments214

using the state-of-the-art (SOTA) navigation model called Shortest Path Oracle Clone (SPOC) [2].215

This model achieves high navigation success rates for diverse tasks such as object navigation, room216

navigation, and so forth. We encode the STL specifications using an efficient computational graph-217

based STL library called STLCG++ that can evaluate multiple state signals in parallel [13]. This218

ensures minimal inference overhead at runtime, which is crucial for foundation model deployment.219

We enforce geofencing and obstacle avoidance by encoding them into invariant STL safety speci-220

fications. Specifically, we generate random regions in the configuration space that the robot must221

either avoid (obstacle zones) or remain within (safe zones), and apply these constraints in real time222

during execution.223

4.2 Benchmarks and Research Questions224

We compare our proposed techniques with (1) an unconstrained base model and (2) a base model225

with a filtering mechanism. The filtering mechanism picks a default action (turning left or right226

in place) upon predicted violation of the safety specification, similar to the Simplex architecture227

[23]. Simplex architecture is a classic scheme in which a high-performance advanced controller228

is continuously monitored by a provably safe but less capable backup controller. Simplex based229

techniques have been used extensively for safety-critical robotics and are a widely accepted standard230

for runtime-safety comparisons. We are interested in three main metrics: STL Satisfaction Rate231

(STL St): Proportion of trajectories that satisfy the specified STL formula, Task Success rate (SR):232

Standard task success, Average Robustness Score (AR): A quantitative measure of how strongly233

STL constraints are satisfied. The three main research questions we investigated in this paper:234

1. RQ1: Do RCD and HCD outperform the baselines in STL satisfaction?235

2. RQ2: Do RCD and HCD lead to task success rates comparable to those of the uncon-236

strained technique?237
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3. RQ3: Does RCD perform better than HCD for task success rates?238

Figure 2: Distribution of STL robustness scores across three action selection techniques for ϕavoid.
The red dashed line marks the violation threshold at robustness = 0. HCD achieves the lowest
violation rate, while RCD strikes a balance between task success and STL satisfaction.

Specification Decoding STL St (%) SR (%) AR

ϕavoid
Unconstrained (SPOC) 72.00 82.5 1.60
Filtering (SPOC-F) 97.00 72.00 1.57
Hard-Constrained (SPOC-HCD) 97.00 72.50 1.73
Robust-Constrained (SPOC-RCD) 93.00 76.00 1.71

ϕgeofence
Unconstrained (SPOC) 78.00 81.5 1.68
Filtering (SPOC-F) 100.00 72.00 1.89
Hard-Constrained (SPOC-HCD) 100.00 76.5 1.97
Robust-Constrained (SPOC-RCD) 95.35 80.23 1.86

Table 1: Comparison of decoding strategies across different backbone models on STL-constrained
tasks. Our constrained decoding approaches show significant improvements in STL satisfaction and
robustness while preserving task success.

4.3 Results239

Our results are highlighted in Table 1 and Figure 2. Unless stated otherwise, all numbers are aver-240

aged over 200 evaluation episodes.241

RQ1 – STL satisfaction. Both HCD and RCD improve STL satisfaction compared with the un-242

constrained SPOC controller. For ϕavoid, HCD improves satisfaction from 72% to 97%, and243

RCD reaches 93%. This trend is even stronger for ϕgeofencing: HCD achieves perfect compli-244

ance (100%), RCD attains 95.4%, whereas the base model satisfies only 78%. We observe that the245

Simplex-style filtering baseline achieves similar STL-satisfaction rate as HCD, 97% for ϕavoid and246

100% ϕgeofence. This parity is expected as both methods block any action predicted to violate the247

specification.248

RQ2 – Task completion. Simplex-style filtering sacrifices task success (SR) because the agent249

takes predefined safe actions. HCD achieves high STL satisfaction, but solves 6-9% fewer tasks250

succesfully than the unconstrained controller. However, as HCD factors in base model logits, it251

is able to achieve higher task satisfaction for ϕgeofence compared to Simplex-style filtering. By252

contrast, RCD preserves task success almost at the level of the unconstrained policy: 76% versus253

82% for the ϕavoid and 80.2% versus 81.5% for ϕgeofencing . This is significantly higher than254

Simplex-style filtering on the same task.255

RQ3 – RCD vs. HCD. While both HCD and RCD improve safety over the unconstrained base-256

line, they differ in how they balance constraint satisfaction with task success. HCD enforces strict257
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STL satisfaction that results in frequent conservatism and lower successful task completion rates. In258

contrast, RCD’s soft penalization leads to higher task success—up to 4–5 % more than HCD—while259

still maintaining over 93 % STL satisfaction. These results show that RCD achieves a better trade-off260

between safety and goal-directed behavior, especially in settings where occasional low-risk actions261

can lead to higher long-term rewards. We also perform an ablation for varying values of β to inves-262

tigate this tradeoff and provide these results in Appendix C.263

Our proposed techniques effectively enforces STL specifications during policy execution. HCD264

ensures full compliance but occasionally sacrifices task success due to strict truncation. RCD strikes265

a balance, offering high satisfaction rates and robust performance. This highlights the feasibility of266

combining learning-based models with formal safety constraints.267

5 Related Work268

Constraint satisfaction for robotics has been an active area of research that involves techniques such269

as control barrier functions (CBFs) [24], safe reinforcement learning [25], and temporal logic-based270

shielding approaches [26]. Recently, with the advent of Vision Language Action models and their271

impressive generalizable capabilities for manipulation, navigation and other tasks, there are grow-272

ing concerns about ensuring safety and correctness without retraining these large models. Although273

classical methods offer formal guarantees, they require pretraining/fine-tuning stage interventions,274

which can be restrictive. For example, SafeVLA [27] fine-tunes pre-trained foundation models with275

task-specific safety costs, achieving strong performance in Safety-CHORES tasks. However, the276

safety specification is expected to be embedded in the training data and loss, meaning the model277

cannot generalize to new safety constraints at test time. In contrast, ASIMOV [28] explores rewrit-278

ing dangerous instructions with better human-aligned alternatives to steer model behavior without279

modifying model parameters, but lacks trajectory-level formal guarantees. Our technique achieves a280

middle ground with the ability to adapt to novel specifications at test time without modifying model281

parameters while requiring minimal assumptions about the underlying model and incurring negligi-282

ble computational overhead. The closest to our work is SELP [29] that proposes LTL-constrained283

decoding for language model-based plan generation. However, since LTL does not possess quantia-284

tive semantics, they are restricted to hard masking-based approach.285

6 Limitations and Future Work286

In this work, we introduce a constrained decoding framework for enforcing STL specifications for287

robotic foundation models. Our approach enables runtime adaptation to novel safety specifications288

without retraining. Through experiments across multiple simulated environments, we demonstrated289

that our method significantly improves STL satisfaction while maintaining high task success rates.290

Our approach makes two critical assumptions that can be a limiting factor. First, we assume access291

to specifications that are defined over the state space and that these specifications are generated by292

roboticists. Although this is a common situation for safety critical deployment contexts like aerial293

robotics [30, 31], these specifications can be difficult to design and involve access to a localization294

module that can provide accurate state estimation. We hope to remedy this bottleneck by lever-295

aging open-world safety specifications using recent work on embedding spaces-based logic (ETL)296

[32] and using Large Language Models for generating high level specifications automatically [33].297

Second, our approach also assumes access to a predictive model to evaluate the impact of actions298

on future trajectories. This can limit applicability to settings where accurate dynamics models are299

unavailable. However, it is possible to mitigate this via learned dynamics models [34] or world300

models proposed in [35, 36]. In addition, while our experiments are conducted in simulation, the301

underlying foundation model (SPOC) has been successfully deployed on real robots with minimal302

sim-to-real degradation [2]. Since our constrained decoding operates primarily at inference time and303

leaves the base model unchanged, the observed improvements in STL satisfaction and task success304

are expected to transfer over to the real world. We plan to rigorously test this by deploying SpecDec305

on the same physical robot platform as [2].306
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Appendix412

A Quantiative Semantics of STL413

Given a signal st representing a signal starting at time t, the quantitative semantics of satisfaction of414

st |= ϕ are defined inductively as follows:415

ρ(st, µc) = µ(xt)− c

ρ(st,¬φ) = −ρ(st, φ)
ρ(st, φ1 ∧ φ2) = min(ρ(st, φ1), ρ(st, φ2))

ρ(st,F[a,b](φ)) = max
t′∈[t+a,t+b]

ρ(s′t, φ)

ρ(st,G[a,b](φ)) = min
t′∈[t+a,t+b]

ρ(s′t, φ)

B HCD proof416

We rewrite the theorem here for easier comprehension.417

Let πHCD denote the policy induced by hard-constrained decoding with respect to an STL specifi-418

cation φ, and let f be a deterministic dynamics model used during decoding. Then the generated419

trajectory satisfies the specification:420

{(xt+1, ât+1), . . . , (xT , âT )} |= φ

where each action ât+k ∼ πHCD(· | xt+k−1), and xt+k = f(xt+k−1, ât+k) for all k.421

Proof Sketch.

πHCD(ât+k | xt+k−1) = {0 |∀â(i)t+k ∈ A, x̂(i)t+k ̸|= φ ∧ x̂(i)t+k = f(x̂t+k−1, â
(i)
t+k}HCD-SAFE{(xt+1, at+1), . . . , (xT , aT )} |= φ
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We proceed by induction over time. At step t + 1, the masking ensures that the selected action422

at+1 is such that (xt+1, at+1) |= φ, where xt+1 = f(xt, at+1). Assuming that the sequence423

{(xt+1, at+1), . . . , (xt+k−1, at+k−1)} satisfies φ, we show that (xt+k, at+k) will also satisfy φ.424

Since actions are masked based on predicted rollouts using f , and f is exact, the only permitted425

actions at step t+ k are those that extend the sequence without violating φ. By induction, the entire426

sequence satisfies φ.427

C Robustness weighting ablation428

Figure 3: Success rate and STL satisfaction rate across different values of β for RCD, which controls
the importance of STL spcification during decoding. As β increases, STL satisfaction improves
while task success shows a slight tradeoff beyond moderate values.

To evaluate the impact of relative weighting between robustness and base logits, we plotted the429

success rate and STL satisfaction rate across varying values for β. As shown in Figure 3, increasing430

the robustness threshold initially improves both task success and specification satisfaction, with431

success rates peaking around a moderate threshold (5–10). However, at higher thresholds (20 and432

25), success rates begin to decline slightly, while STL satisfaction remains high.433

This trend highlights a trade-off introduced by weighting robustness. Higher robustness weighting434

leads to better STL satisfaction at the cost of hindering overall task completion as logits for feasible435

actions are shifted heavily by the robustness values. These results demonstrate the importance of436

carefully balancing robustness weighting to maintain both task success and STL satisfaction.437
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